B Informatics

At One’s Own Pace

"Walking Onions" and resource-constrained
devices in the Tor network

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science
in
Software & Information Engineering
by

Ivaylo Ivanov
Registration Number 11777707

to the Faculty of Informatics
at the TU Wien

Advisor: Univ.-Prof. Dipl.-Ing. Mag. Dr.techn. Edgar Weippl
Assistance: Dipl.-Ing. Dr.techn. Wilfried Mayer

Vienna, 17" March, 2022

Ivaylo lvanov Edgar Weippl

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 = www.tuwien.at

Erklarung zur Verfassung der
Arbeit

Ivaylo lvanov

Hiermit erklére ich, dass ich diese Arbeit selbstédndig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollstdndig angegeben habe und dass ich die Stellen der
Arbeit — einschliefSlich Tabellen, Karten und Abbildungen —, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 17. Méarz 2022

Ivaylo Ivanov

iii

Abstract

Walking Onions is a set of protocols, aimed at bringing performance improvements to
Tor with regard to circuit construction. The original research includes a simulation and
provides an empirical proof that the amount of bandwidth used for connecting to the
onion network has been greatly reduced.

The aforementioned simulation, however, has been performed in a rather static manner
and a usability assessment from the client point of view is missing. In this thesis, we
conduct the same simulations with dynamic and publicly available bandwidth sample sets
from 2019 and 2021. Additionally, we also define two theoretical scenarios - one where
all fast relays (with bandwidths above the upper quartile in the sample set) suddenly go
offline and one where all slow relays (with bandwidths below the upper quartile) suddenly
go offline, and perform the simulations for them as well. Finally, we perform usability
assessment from the client point of view by calculating the time required to construct a
circuit and approximating it to real-world data from 2019 and 2021.

The results show that the total bandwidth required for circuit construction during an
epoch is a negligible part of the total throughput of the network for that same period. A
trade-off for this improvement is also presented - because of the additional complexity
of the protocol stack, the time required to construct a circuit will be larger than the
original Tor implementation.

Contents

Abstract v
Contents vii
1 _Introduction 1
2 Background 3
2.1 Relays and directory servers| 3
2.2 Vanilla Tor protocol - circuit building 4
2.3 Walking Ontons|. 6
3 Related work 10
3.1 Tor performance evaluation| 10
3.2 Tor experimentation 0oL 11
3.3 Summary e e e 12
4 Methodology 13
4.1 _Simulation scenarioSo 13
4.2 Circuit building timeso 14
4.3 Simulator changes Lo oo 17
4.4 Initial attempts 18
5 Results 20
5.1 Simulation scenarios/ L L o 20
5.2 Total throughout, oo 29
5.3 Circuit building times o 31
6 Discussion 34
7 Conclusion 36
List of Figures 37
List of Tables 39

vii

List of Algorithms

Bibliography

40

41

CHAPTER

Introduction

Since its initial release, Tor has played an important part of the daily lives of a lot of
people - from whistleblowers and citizens of oppressive states to normal people who want
to keep their privacy online. According to the official Tor user metrics [I] for 2021, Tor
relays have seen a constant usage of about 2 million people worldwide.

Despite its popularity, Tor, as any software, is not perfect. One of its most crucial
issues that need to be addressed is speed. As the "Frequently Asked Questions" section
of their website [2] suggests, Tor’s less than ideal speed is a result of the inherent
design of the anonymity network. This issue, however, prevents users from using the
Tor browser as their only everyday browser and puts it in a category of a companion
browser. Such behavior from the users is dangerous as inconsistent usage may lead to
de-anonymization [3].

Recently, a lot of research has been focused on improving Tor’s speed and performance.
One such advancement is the work of Komlo et al. [4], called Walking Onions, which
introduces a new set of protocols that aims to make the anonymity network more scalable
and to reduce the metadata that needs to be passed for circuit construction while retaining
the initial anonymity of the users.

In this thesis, we will take a look into how the different Walking Onions protocols perform
on resource-constrained devices by evaluating different theoretical scenarios using a
reworked version of simulator, provided by the authors of the paper [5]:

o will the set of protocols offer the same speed improvements when taking into
consideration the bridge and relay landscape at the time of writing;

o what will happen if the "fastest" Tor relays at the time of writing suddenly became
offline and only the slower ones were left;

1. INTRODUCTION

o what will happen if the opposite situation occurs - the slower relays are removed
and only the fastest ones are left?

Additionally, we will investigate if there are any trade-offs in using Walking Onions and
if these potential negatives outweigh the positives.

The analysis is split in different chapters. Background work is presented in chapter 2.
Related work can be found in chapter 3. The methodology of the study and the results
are presented in chapters |4 and 5| respectively. The results are then discussed in chapter 6.
The work is concluded in chapter 7.

CHAPTER

Background

In this chapter, we will review how connections, or circuits, are constructed in the
traditional ("vanilla") Tor protocol [6], what components are needed and how the proposed
improvements compare.

2.1 Relays and directory servers

The Tor network is based on community-run Onion Routers or relays [6]. There are
approximately 6500 of them at the time of writing [7]. Each relay maintains a long-term
identity key, which is used to sign the relay’s own relay descriptor [8]. Thus, it may
later be verified that the relay descriptor comes from its expected source, assuming a
non-compromised key. Apart from the numerous other details, the descriptor contains
the router’s IP address, bandwidth and the router’s onion key - a short-term key that is
used by the client to construct a circuit using this relay.

Vanilla Tor circuits normally contain three types of relays, separated in different layers
(hence, onion routing). The relays can be categorized in the following manner:

e guard relay - the guard relay is the closest to the client and the one that receives
the initial connection request;

e exit relay - the exit relay lies the farthest from the client and is the one that
forwards the traffic directly to the destination;

o middle relays - one or more relays that lie between the guard and the exit. They
are responsible for forwarding the traffic securely to the next hop.

According to their position in the circuit, each relay knows a subset of the whole
information the client knows:

2.

BACKGROUND

e the guard relay knows the source, but not the destination of the traffic;
e the middle relays know neither the source, nor the destination of the traffic;

o the exit relay knows the destination, but not the source of the traffic.

Additionally, each relay has a different key for encrypting the communication to the next
relay [6]. Thus, perfect forward secrecy for the data is preserved.

Apart from relays and clients, there is also another type of nodes in the Tor network -
directory servers [6]. They are highly available entities that are responsible for gathering
relay information through the signed relay descriptors and presenting it to the clients
and other relays. Each hour (this interval is referred to as "epoch" later on), the directory
servers evaluate the gathered relay data, vote on it and produce a signed document
called a consensus document [§], containing all relays that are suitable for routing traffic
through the Tor network. The clients and other relays then fetch and cache the data and
use it to build circuits.

2.2 Vanilla Tor protocol - circuit building

Vanilla Tor circuits are constructed in a telescoping manner (for simplicity, the format of
the requests or "cells" has been omitted):

1. the client sends a CREATE request to the guard relay of the chosen path and both
negotiate a session key for the communication;

2. the client sends an EXTEND request, containing an identifier of the next hop, to
the guard relay. The guard relay may decapsulate the request and create a new
CREATE request to the next hop or simply forward it to an already existing next
hop. When the connection has been established the same way as the previous step,
an acknowledgement, containing the new session key, is sent to the client. This
step is repeated as much as needed;

3. when the connection to an exit relay has been established, the client may continue
with normal TCP traffic that gets forwarded through the circuit. The traffic
between the exit relay and the destination may be running in clear text if the
destination is not using encryption or is not running as a Tor hidden service [6].

The process can be seen in Figure 2.1 - the dotted line represents (potentially) plaintext
traffic, whereas the solid represents encrypted traffic.

2.2. Vanilla Tor protocol - circuit building

Figure 2.1: Vanilla Tor circuit construction

Alice example.com
[CREATE—|
[€——CREATED, K1—
EXTEND, R1—»
———CREATE—»|
[€—CREATED, K2——
[€——EXTENDED, K2——
EXTEND, R3——»
EXTEND, R3—»
——CREATE—»
[€——CREATED, K3
[€——EXTENDED, K3
[e——EXTENDED. K3
—BEGIN, example.com—3
——BEGIN, example.com—»
—BEGIN, example.com—
[€----- TCP Handshaker ---- 3
[€——COMNECTED——
[COMNNECTED—
[€E——CONNECTED—
| »
= . e >
= < -
- [~

2.

BACKGROUND

2.3 Walking Onions

2.3.1 Overview

Walking Onions refers to a set of protocols, described by Komlo et al. [4], which aims to
create a new way for circuit extension in Tor that should make the network drastically
more scalable and reduce the amount of metadata that the Tor network participants
need to possess and process in order to construct a circuit.

In this section, we will first introduce the new data structures that Walking Onions
proposes and compare them to the ones aforementioned in section 2.1 Afterwards, we
will briefly cover two different algorithms for authenticating the new data structures from
clients and relays. Finally, we will summarize the two methods for circuit construction
from the paper and compare them to the "vanilla" one.

2.3.2 SNIPs and ENDIVEs

As with the vanilla implementation of Tor [6], the Walking Onions set of protocols also
feature a document, created by directory servers on a per-epoch basis - the Efficient
Network Directory with Individually Verifiable Entries, or ENDIVE. Each ENDIVE entry
is called a SNIP - Separable Network Index Proof.

ENDIVESs are fetched by relays when bootstrapping and updated by obtaining only the
changes in regular intervals (once per epoch). With Walking Onions, clients do not
require the whole document to construct a circuit.

Each SNIP serves the same function as a relay entry in the vanilla consensus document.
They contain the same information about relays as the vanilla Tor relay descriptors [§],
but they expand it with three more important fields:

e indexr range - a range of integers showing how probable it is for this relay to be
included in a circuit;

e own authentication tag - each SNIP is signed by the directory servers only over its
content. As such, clients can fetch individual SNIPs and not the whole ENDIVE;

o timestamps - two timestamps indicate the creation and expiration of a SNIP.

Both ENDIVE and SNIPs are authenticated by the directory servers so that relays and
clients know that they can trust them. A short overview of how this is achieved and
what algorithms are used is available in the next subsection.

2.3.3 Authentication algorithms

Walking Onions can authenticate the previously introduced data structures - SNIPs and
ENDIVEs, in three ways.

2.3. Walking Onions

The most naive implementation is to have one signature per voter - each directory signs
the ENDIVE and the SNIPs. This way, the ENDIVE contains Ny - N, signatures, where
Ny is the number of directory servers and N, - the number of relays. This is not ideal,
as the relays need to fetch more information when bootstrapping.

The second way is to use joint signatures - a single signature represents an arbitrary
number of signers. This means that the directory servers need to coordinate to sign the
entity. In the case of Walking Onions, threshold signatures [9] have been used - only a
subset of all signers need to sign.

The final way proposed is using Merkle trees [I0]. The client can verify that a specific
SNIP is within the ENDIVE, signed by the directory authorities by downloading the
root of the Merkle tree from the ENDIVE. Later on, this root is used in conjunction
with a proof, saved in the SNIP that the client downloads. This proof should show that
the SNIP can be obtained by following a path from the previously acquired root, thus
proving its validity.

Regardless of the way the directory servers sign the document, the clients and relays only
need to verify the authentication tag attached to the SNIP or the ENDIVE.

2.3.4 Walking Onions - circuit building

The Walking Onions set of protocols have two variants of circuit construction. The first
one is in a telescoping manner, similar to the vanilla Tor approach. The second one aims
to create the circuit in a single pass - the client contacts the guard relay and it handles
the rest of the extension, delivering all the keys to the client in a bulk at the end.

In this subsection, we will look into both protocols and describe their advantages and
disadvantages compared to vanilla Tor.

Telescoping Walking Onions

As mentioned previously, telescoping Walking Onions works similarly as the vanilla
implementation, described in section 2.2/ and displayed in Figure [2.1.

There are a couple of differences, the first being that the client does not select the next
hop manually, but instead generates a random index between zero and an arbitrary
value « (the original paper recommends the value of 232). This value gets sent with the
extension request to the last hop of the already established circuit (for example, R,,). The
relay R, then fetches the SNIP from the consensus that has the chosen index in its index
range. This will be the next hop of the circuit (R,+1). The confirmation messages are
also adjusted to include the SNIP of the chosen relay R,; alongside with the key. The
client has the signed network parameters and can verify the SNIP of R,,4+1. Furthermore,
the client verifies that R,11 has been chosen fairly by checking if the selected index is
really within the range, specified in the SNIP.

Clearly, this protocol presents minimal changes that need to be done to the vanilla
implementation to work. This is not the case with the next type of the protocol.

2.

BACKGROUND

Single-Pass Walking Onions

Single-Pass Walking Onions is a newly-proposed path selection algorithm, which, unlike
the telescoping variation, aims to build the whole circuit with a linear number of messages,
relative to the number of relays in the circuit. This has a positive effect on the bandwidth,
available for the Tor network, as the amount used for circuit construction has been greatly
reduced.

Circuit construction with the protocol continues roughly as follows:

1. the client generates two ephemeral Diffie-Hellman key pairs - one for deriving
session related keys and one for performing index calculation. Additionally, an
integer TTL (time to live) counter is also created. This counter shows the number
of hops that the circuit should have and indicates to the last circuit to terminate
further construction. The public keys and the TTL counter are sent to the guard
relay;

2. the next hop in the circuit receives the keys and the TTL counter;

3. the relay uses its own set of keys and the ones from the client to generate a shared
secret for the circuit expansion;

4. a random index is generated. This is not a hard requirement solely for the client
like in the telescoping protocol, but rather a shared responsibility between the client
and the relays. The index is also created in such a way that the client can verify
that no interference by a third party has occurred. This random index is then used
for selecting the next relay in the same matter as in the telescoping variant;

5. the current relay signs the keys from the client with its own private keys, reduces
the TTL counter by one and forwards the signed keys and the TTL to the next
relay;

6. if the next relay is not the final relay of the circuit, it repeats the same actions;

7. the final relay responds with its own session key and SNIP, which then both get
forwarded down the chain until they reach the client;

8. the client verifies the SNIPs. At this point in time, the client has also gathered all
the relays’ keys;

9. the communication with the target proceeds as normal.

A graphical representation of the protocol can be seen in Figure 2.2. It is important to
note that this is a simplified explanation of the process. The exact algorithm is out of
the scope of the thesis, but an interested reader will find more information in the original
research paper.

2.3. Walking Onions

Figure 2.2: Walking Onions - Single Pass circuit construction

Alice example.com

——CREATE, K, V, 2—»
——CREATE, K', V', 1—»|
——CREATE, K", V", 0—®

€« ——CREATED, K3, S3—
CREATED, [€CREATED, K2, 52, K3, 53

K1, K2, 52, K3, 53

—BEGIN, example.com—*|
—BEGIN, example.com—™|
BEGIN, example.com—™
[%€----TCP Handshake----

[E—CONNECTED
[€—CONNECTED
[—CONNECTED
= o = @
L L | »
(b gt R ~F--------- >
- L S

CHAPTER

Related work

In this chapter, we will give an overview of the work that inspired or is connected to this
thesis. Section 3.1 will present different ways to model and evaluate Tor performance. In
section [3.2| state-of-the art solutions for Tor experimentation will be described.

3.1 Tor performance evaluation

Performance has always been a pain-point for Tor [2] and is a really active field of
research for potential improvements. Because of this, there are numerous ways to
evaluate performance. All of them, regardless of their count, need a metric that acts as
a model for the analysis. Picking a suitable metric before evaluating performance data
is called performance modelling. Snader and Borisov [11] argue that one metric that
can be used as a performance model for evaluations is the node throughput, which is
directly linked to its bandwidth. As bandwidth already plays a large enough role in the
consensus creation process, this statement is not unreasonable. An additional proposal
by Murdoch and Watson [12] state that another such metric is the expected processing
time for a cell. In addition, they also argue that the bandwidth is usable as a measure for
usability assessment, but does not account for the effect of modifying the whole network
(for example, all nodes adopt a new circuit-building protocol or path selection algorithm).

As the ultimate goal is to improve the overall experience for the client, performance
evaluation should be done alongside usability assessments. The paper by Miiller et
al. [13] describes a usability assessment experiment that uses latency for HTTP requests
experienced by the client as a metric for Tor usability. This is also not unreasonable, as
high latency may drive new users away and thus hinder the growth of the Tor network.
The experiment is conducted with clients, located on different continents, that perform
requests to the websites in the SEOmoz Top 500 list [14]. The latencies are then gathered
and evaluated against each other. Additionally, an analysis of the user tolerance has also
been conducted.

10

3.2. Tor experimentation

3.2 Tor experimentation

Generally, Tor experimentation aims to find the balance between realism and safety - the
evaluations need to be as realistic as possible without providing any real dangers to the
live Tor network. There are many existing evaluation methods - from abstract models of
the Tor network, through network simulators up until running tests "in the wild". Shirazi
et al. [I5] categorized them in six categories:

o analytical/theoretical modeling;

e private Tor networks;

o distributed overlay network deployments;
¢ network simulation;

¢ network emulation;

¢ live Tor research.

Out of all six, we are only going to focus on network simulation and network emulation,
as they are relevant for this thesis.

ExperimenTor [16] is a whole-Tor network testbed, aimed at performing Tor network
emulation. The tool relies on two components for its functionality - clients, running the
Tor source code directly, and a ModelNet [17] network emulator that connects the clients
in a network. The clients normally run in a virtualized environment and the emulator
connects them to a virtualized network topology. One advantage to this approach is
that Tor performance improvements can be directly tested in a controlled environment
running an improved version of the software.

Shadow [I8] is a plugin-based network simulation platform that allows running Tor
experiments on a single machine. The Tor plugin allows the user to run real Tor source
code and perform experiments in a flexible and reproducible manner. This method
has the same advantage as ExperimenTor - namely, researchers can test with the real
codebase and submit improvements quickly to the upstream. One could argue that it is
even more flexible than ExperimenTor, as the users are not required to have a cluster at
their disposal - only a single machine with enough resources will work just as fine.

Both of these models are not perfect. They have two issues that need addressing: sampling
errors may occur when running simulations and they do not suit all needs as radical
changes normally need to be prototyped first.

Jansen et al. [I9] address the first issue by grounding the foundations for sound statistical
interference for Tor networks. It is argued that because most simulations are sampled, a
sampling error may occur, skew the results and cause Type-I or Type-II errors in the
conclusion. The researchers have also incorporated their findings in Shadow.

11

3.

RELATED WORK

12

The second issue is solvable by developing a custom simulation that focuses only on the
problem at hand before contributing to the Tor codebase. As such, Komlo et al. have
created a simulator[5] just for the Walking Onions stack of protocols.

3.3 Summary

By recapitulating the aforementioned works and viewing them in the context of Walking
Onions, it is visible that an experiment for evaluating the proposed protocol design is
needed.

The experiment must be as realistic as possible without going out of the scope of the
thesis - if no actual implementation is available for emulation, then simulation should be
considered. As the new protocol stack proposes improvements for the user, a suitable
user-focused metric should be chosen for performance modelling. Additionally, the
simulator should allow usability assessment by simulating multiple scenarios from the
client perspective using a model that takes into account the fact that the whole network
has undergone a drastic change. Finally, the simulator should, ideally, take statistical
interference in account when gathering the results.

The original simulator already covers the first two requirements. The third requirement
has not been covered in the original paper and is out of the scope of the thesis.

In the next chapter, this work will introduce the following improvements to the experiment:

o enhanced realism - make it possible to supply real-life data;

« additional scenarios - use a similar performance metric to the one by Snader and
Borisov [11] to define different performance classes and evaluate the stack with
them;

e usability testing - using a similar performance metric to the one by Murdoch and
Watson [12], perform a usability assessment from the client perspective.

CHAPTER

Methodology

In this chapter, the methodology for evaluating different scenarios for the Walking Onions
set of protocols will be presented. In section 4.1, different simulation scenarios will
be presented. In section 4.2, the evaluation of circuit building times will be described.
In section 4.3], the changes and functionality that were added to the simulator will be
presented. In section [4.4, the initial attempts for running simulations will be shortly
covered.

4.1 Simulation scenarios

Because of its design [6], the Tor network relies on volunteers to function - relays run
on diverse hardware, in different parts of the world, with different people operating
them. This distribution of the network resources is good for several reasons: anonymity
is improved and there is no central entity in control of the network. Unfortunately, it
also means that sometimes a Tor relay is ran on inadequate hardware - either from the
perspective of system resources or available bandwidth. There are ways to tackle the
issue - directory servers tend to favor faster nodes over slower ones, but there is no
guarantee that your circuit will not get a bottleneck by going over an underpowered
hop. Another solution would be simply not including the slow nodes in the consensus.
When only a handful of nodes are used, however, anonymity will suffer as paths will
become predictable and entities, operating a large enough amount of nodes, may be able
to perform correlation attacks.

This raises the question if Walking Onions could solve the issues with technically in-
adequate devices. To answer this, we decided to look into how Walking Onions would
perform under different theoretical scenarios. These scenarios are presented in the
following paragraphs.

13

4.

METHODOLOGY

14

4.1.1 Current network landscape

The first question that arises is what improvements does Walking Onions bring in the
current Tor network landscape? The original research already examined this, and even
though the evaluation was based on measurements from 2019 (see section 4.3), it provided
a solid basis that was expanded and improved to include more recent data. We ran
simulations using recent data about the whole network, including bridges.

4.1.2 "Running Onions"

As previously mentioned, Tor is run on a number of inadequate devices. However, there
are also quite a few organizations that are dedicated to running Tor relays only, called
Relay Associations [20]. Normally, these nodes are reserved only for this usage and
provide lots of bandwidth to the network. This brings us to the following scenario: what
would the impact on the network performance (not anonymity) be if we left Tor running
only on performant nodes? The idea is to discover whether Walking Onions really brings
any meaningful improvements in this scenario over running the vanilla implementation.

4.1.3 "Strolling Onions"

Naturally, we also wanted to consider the opposite: what would happen if only the
"slower" nodes were left? This scenario is more interesting. It aims to evaluate whether
Walking Onions would be able to bring the performance of such a Tor network on par
with the current one. It also has another implication - if we observe a large improvement
in the available bandwidth, this would mean that technically inadequate (by the current
standards) relays may be able to handle more traffic and be used in more circuits, thus
improving anonymity.

4.1.4 Defining slow and fast nodes

In order to do this separation, we need to define what "fast" and "slow" nodes mean.
After analyzing our datasets, the conclusion was reached that we will refer as "fast" to
the nodes that have bandwidths above the upper quartile of the set of relay bandwidths,
and as "slow" - to the rest. A graph supporting the split is available in Figure 4.1. It is
based on the datasets used in the simulations.

All the scenarios have been simulated on the 5% network scale of 2019 and 2021 sample
data. The results can be seen in section 5.1l

4.2 Circuit building times

The Walking Onions set of protocols propose new ways of building circuits, one of which
is similar but the other drastically different from the vanilla implementation. As such,
an important aspect to evaluate is the speed at which a circuit can be built. When
calculating circuit build times, we need to give answers to two questions: how are the

4.2. Circuit building times

Figure 4.1: Bandwidth distributions, 2019 & 2021

Bandwidth distribution

9000 T T T |
8000
7000
6000 n
5000 n
4000 .
3000 | n
2000 n
1000 n
0 | | | |
0 100000200000300000400000500000

Bandwidth (kB/s)

2019-12-28 ——
2021-12-16 ———

Number of relays

measurements conducted in the simulator and how do we evaluate the results with regard
to real-world performance.

4.2.1 Conducting measurements

The measurements are conducted directly in the simulator by pinpointing the exact time
when the circuit construction started and subtracting the result from the time when the
circuit construction finished. Because the speed of the simulator is based on the current
clock speed of the Central Processing Unit (CPU) of the machine and does not take into
account real-world interferences like network bottlenecks and physical distance, the end
result is returned as a decimal number, representing fractional seconds. These results by
themselves are useless, but they allow us to calculate a value to which we are going to
refer to as circuit building ratios.

4.2.2 Circuit building ratios

In sections 2.2/ and [2.3, we presented how circuits under different protocols are constructed.

The vanilla implementation of the construction algorithm is the most resource-friendly in
terms of computational power as it does not rely on performing so many calculations
but rather on parsing already-available data. As such, we can make the assumption

that the simulator will construct circuits the fastest when performing vanilla simulations.

This means that we can take each Walking Onions measurements and divide them with
the vanilla ones to get the ratio in which they are related. The calculated ratios should
remain unchanged through different simulations, regardless of the power of the underlying
system, as the simulator always completely monopolizes a whole core throughout an
epoch.

15

4.

METHODOLOGY

16

4.2.3 Ratios and real-world speeds

The speed of circuit construction is relative to the different Tor users and can be
impacted by multiple factors - from slow connection to low-powered CPU. In order to
do an evaluation of circuit building speeds, one needs a dataset that is representative of
the different factors. At the time of writing, such a dataset is offered by the Tor metrics
project [21]. In order to obtain a basis for vanilla circuit construction to use with the
ratios from the previous paragraph, we do the following:

o parse the file, according to the current specification [22];
e sum the median circuit building times for all three positions in a region;

o calculate the average times, using the sum above.

The end result is then multiplied by each of the ratios from the previous paragraph. Thus,
we obtain a speed that can give us insight in how the protocols would perform when
constructing a circuit in real-life. The code for performing the calculation is available in
algorithm 4.1.

Algorithm 4.1: Relative circuit building time calculation

Input: list of dicts of real-world circuit building times C' for source S, dict of
local circuit building times L

Output: dict of relative times T for source S
s+ 0;
[« len(C); /* note: 1 is always 3 per the spec x/
fort+0tol—1do

‘ s < s+ C[i]["md”]; /* s holds the median sum =*/
end
b+ s/l /* b holds the average of the medians x/
R+ {} /* R holds the ratios as in 4.2.2 */
v < L["vanilla”];
for k in L.keys() do

‘ RIk] < L[k]/v ; /* k represents a protocol type x/
end
T {}
for k in R.keys() do

| T[k] < R[K] * b;
end

© W N O AN W N

T e e
U N W N = O

The relative circuit building times have been calculated on the 5% network scale of 2019
and 2021 sample data. The results can be seen in section |5.3.

4.3. Simulator changes

4.3 Simulator changes

At the time of writing, the Walking Onions simulator makes the following assumptions
when running the simulations: the relay landscape is approximated to the one from
December 2019 and the number of relays is statically set to 6500. Both are visible in the
source code of the simulator [23] [24].

The assumptions from above make it hard to reevaluate the stack using a newer set of
data. In order to do so, one needs to change the statically set bandwidth distribution

algorithm with one that produces an approximation for a more recent point in time.

Additionally, one must also change the statically set number of relays.

To tackle this issue, the following approach has been taken:

« an automatically exported Tor bandwidth metrics file [25] gets fed to the simulator;

o the Simple Bandwidth Scanner [26] (sbws) bandwidth files get parsed by the
simulator, following the specification [27]. Bridges are also included, relays with
bw=1 get discarded as they are not included in the consensus;

¢ the simulator automatically counts the elements in the parsed data from the previous
step. Each element represents a relay or a bridge. Thus, the number of relays is
obtained dynamically;

o the parsed data, the sample size and the total number of relays get submitted to an
adjusted version of the sampling algorithm, presented by Jansen et al. [28], which
produces a bandwidth distribution for the simulation. The adjustments are detailed
in algorithm 4.2 and they aim to produce the same number of results as the sample
size. The algorithm returns a distribution that is skewed towards the slower relays
to limit the interference. Due to time constraints additional improvements have
not been implemented.

With this approach, it is now possible for the user to feed the simulator real-world
samples, which get dynamically parsed and evaluated. The original algorithm by Komlo
et al. has been kept as a separate function for fallback. One drawback of this approach is
that the simulator only supports sample sizes of at most 50 percent of total relay count
in the bandwidth file supplied. This, however, does not hinder our simulation.

Additionally, in order to simulate the scenarios in section 4.1, a bandwidth file generator
was needed. The generator parses the sbws bandwidth files, sorts the data and splits it
in quartiles. A command line argument specifies whether the output file only needs to
include relays with bandwidth above or under the upper quartile as per section 4.1 The
produced files can be directly fed to the simulator.

The easiest way to evaluate bandwidth differences between years is with a plot. This
feature has been added to the simulator along with the dynamic bandwidth distribution

17

4.

METHODOLOGY

18

Algorithm 4.2: Adjusted Jansen distribution algorithm

Input: sorted list L of N relay bandwidths, sample size K
Output: sorted list of sampled bandwidths S of size K
n « floor(%);
r<— K —n;
1< 0;
for k<~ 0to K —1do
j—i+n
if K <r then
| Jedt
end
bin < L.slice(i,j) ; // range [i, 7)
S.add(median(bin));
RV E
end
[< len(S);
if | < K then
for c+0to K —1do
‘ S.add(S]c]) ; // append from beginning until |S]| = K
end

© O g O R W N

Juy
(=}

T S e T T S R
N O Gtk W N =

end

-
0]

calculation. The sbws bandwidth files get parsed as mentioned previously, sorted and
then plotted.

The evaluation for circuit building times highlighted in section 4.2 has also been imple-
mented in the simulator.

4.4 Initial attempts

There were two initial ideas for simulating Walking Onions on resource-constrained
devices - creating a real-world simulation with machines, running the Walking Onions
stack implementation, and adapting the simulator by Komlo et al. to have simulated
resource-constraints.

The first idea was immediately discarded as an official implementation for the protocols
had not yet begun at the time of writing. The second attempt included splitting the
simulator in different processes, which in turn can be made to simulate memory and
processing time limitations by using the multiprocessing Python library [29].

The simulator implementation is split into classes. In order to make the different parts
run in parallel, we are interested mainly in Server, Client, Relay, DirAuth
(UML diagram can be seen in Figure 4.2)).

4.4. Initial attempts

Figure 4.2: Simulator UML diagram (relevant classes)

ChannclManager

channels : dict
consensus : NoncType
dirnuthaddrs

myaddr

perfstats

relaypicker : NoncType

Server
closer
name
bind(netaddr, closer)
close(y

connected(client)

Relay

add_channel{channel, peeraddr)
get_channel_tofaddr)

received_cell(circid. cell, peeraddr, channel)
received_msgimsg. peeraddr. channel)
send_cellicircid, cell, peeraddr)
send_msglmsg. peeraddr)

terminate!)

ClientChannelManager

consensus
guard : NoncType

guardaddr - NoneType
relaypicker : NoneType

DirAuth o
conscnsus - NoncType current_desc - NoncType
daemen : bool daemon : bool
endive - NoneType flags
me idkey : SigningKey
Client name is_fallbackrelay : ool
hamnemgr netaicc
netadr T perfstats netaddr
- sigkcy © SigningKey next_dese : NoneType _ i
ped ot next_path_sclection_key : PrivatcKey, NoneType
get_cons) cs « dict onionkey : PrivateKey
newepachiepoch) loscd() puth_selection_key : PriviteKey. NoneType
terminate() . dient) pertstats
cpoch_ending(cpoch) connectedipeer)
generate_consensusiepoch) epoch_endinglepoch)
receivediclient, msg) newepochicpoch)
run(} runf)
terminate{} set_is_fullbackreluy(isfallback)

e

)
uploaddesc{upload)

ensure_guard()

ensure_guard_vanilla()

cnsure_guard_walking_onions()
consensus_from_fallbackrelay()

glepass()

telescoping()

illa)

licircid, cell, pecraddr, channel)
received_msg(msg. peeraddr, channel)
test_guard_connection()

charinelmgr netaddr |\ netaddr pefstats channclmgr / netaddr N, perfstats | perfstats current_dese | next_des
RelayChannclManager PertStats
consensus o : NoncType
dese “'E"'“ bytes_received : int
oL s_sent © :
endive : NoneType Nethdds Ptes sent ot RelayDescriptor
idpubkey ent_type descdict
onionkey addr b ine : beol
path_sclection_key_getter keyoens int sign(signingkey. perfstats)
relaypicker : NoneType n‘_;-'rfs: NoneType verify(dese, perfstatsh
get_consensus(] sigs - int
received_cell(cireid, cell, peeraddr. channel} verifs - int
received_msg(msg, peeraddr, channel) p——

As visible from the diagram, the DirAuth and Relay classes both extend the Server
class. As such, the idea for the implementation was to make the Server class extend
Python’s Process class [30] and let each subclass implement the run () method as per
the needed functionality. Then, each process would get artificially limited using Python’s
resource library [31], which would simulate a resource-constrained device.

After implementing the functionality from above, the relays and the directory servers
were able to start as different processes and they were getting their limits set. However,
the simulator is constructed in such a way that the most work gets done in a single
process regardless of whether the servers are running in different processes. This resulted
in one main process and dozens of child-processes that were running and staying in a
busy-waiting state until the parent was finished. Additional inspection showed that the
whole communication system would also need to be re-implemented in a process-safe
manner, which would mean rewriting the entire simulator from scratch. This was out of
the scope of the thesis and the second idea was also discarded.

19

CHAPTER

Results

In this chapter, the results from the tests, described in chapter |4 are presented. In
section 5.1, the results from the different simulation scenarios are presented. In section|5.3,
the results from the circuit building times tests are presented. All the code, analysis
scripts, datasets and results are available at https://git.ivayloivanov.eu/ivo/
walkingonions—boosted.

5.1 Simulation scenarios

As mentioned in section 4.1, the results below have been obtained by simulating the
different scenarios on the 5% network scale of 2019 and 2021 sample data.

We will analyze three different metrics: total relay bytes - per client and per relay, and
total client bytes.

The first metric is total relay bytes, which measures the total number of bytes a relay
sends or receives per epoch. An important remark is that the data in the Walking
Onions paper have been normalized, meaning that the total accumulated bandwidth has
been divided by the number of relays. This is not a problem, because the formula for
calculating the number of relays (N) only contains one variable: N = S % 6500, where S
represents the network scale and 0 < § < 1. In our case, however, the number of relays
differs from scenario to scenario. The formula N = S * T replaces the constant with an
additional variable T', which denotes the total number of relays in the given scenario (the
size of the distribution, returned by algorithm 4.2). Thus, in order to draw comparisons
between the results here and the ones obtained in the original research, we are going
to use an alternative way of representing the data - the total number of bytes sent or
received by relays, divided by the number of clients, which is a constant parameter that
is shared between both the paper and this thesis (namely, 2.5 x 105). We will also present
the total relay bytes on a per-relay basis, as it will show us how much traffic each relay

20

https://git.ivayloivanov.eu/ivo/walkingonions-boosted
https://git.ivayloivanov.eu/ivo/walkingonions-boosted

5.1. Simulation scenarios

handles in order to construct a circuit. A more client-centric metric is total client bytes.
It presents the total number of bytes a client sends or receives per epoch.

The next pages will present the results for each scenario. Recall that in section 4.1, we
defined the following scenarios:

o Walking Onions - the results for this scenario have been obtained by running the
simulator with a 5% sample of the full sample sets from 2019 and 2021 respectively;

e Strolling Onions - the results for this scenario have been obtained by running
the simulator with a 5% sample of the filtered sample sets from 2019 and 2021
respectively. The filter applied was to exclude all bandwidths above the upper
quartile from the sample set;

e Running Onions - the results for this scenario have been obtained by running
the simulator with a 5% sample of the filtered sample sets from 2019 and 2021
respectively. The filter applied was to exclude all bandwidths below the upper
quartile from the sample set.

The labels in the graphs have the same meaning as in the original paper - (M) indicates
Merkle authentication, whereas (T) indicates threshold signatures. The vertical black
line represents the size of the current Tor network.

21

d.

REsuLTS

22

Scenario - Walking Onions

120000
100000
80000
60000
40000
20000
0

100000
90000
80000
70000
60000
50000
40000
30000
20000
10000

0

2x10’
1.8x107
1.6x107
1.4x107
1.2x107
1x10’
8x10°
6x10°
4x10%
2x10°
0

Figure 5.1: Walking Onions - 2019 sample set

Relay total bytes per client

. Vanilla
- B Sing(M)
L e 1 Tele(M)
.- Sing(T)
B esorrrizIIICIIiIoIoIICic . Tele(T)
R S | Analytical
| | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
L . Vanilla
L PR Sing(M)
- P . Tele(M)
» - - Sing(T)
B e 7 Tele(T)
i PR | Analytical
_________ —j?;;;;;;;;:::::::::::;:::}
[| | | |]
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
' ' ' Vanilla
$ Sing(M)
Tele(M)
Sing(T)
Tele(T)

1T T T T 1T T 11

N I I I A |

413 414 415 416 417 418 419 420 421 422

Number of relays

(c) Total relay bytes per relay

5.1. Simulation scenarios
Figure 5.2: Walking Onions - 2021 sample set
Relay total bytes per client
120000 ' . Vanilla ——
100000 f PR Sing(M)
_ P Tele(M) ——
80000 S Sing(T)
60000 - o e L Rl peibe . Tele(T)
40000 [7TIIEATTIIII I s Analytical - - - - -
20000 [:
0 | | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
190000 | ' ' ' —J Vanilla ——
80000 _.--7 A Sing(M)
70000 - PR . Tele(M) ——
60000 - PR . Sing(T) ——
50000 [.- - Tele(T)
‘318888 i e | Analytical -----
20000 p = _.';—."_i_:.’ T T I I A
10000 - —
0 | | | |
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
7
1.8%107 T T T T T Tl Vanilla
1.6x107 | ¥ 1 Sing(M)
1.4x107 + 4 Tele(M) +
1.2x107 + . Sing(T) +
1x107 + n Tele(T)
8x10° |- .
6x10° - -
4x10° - .
2x106 + .
0 | | | | | | |

389 390 391 392 393 394 395 396 397

Number of relays

(¢c) Total relay bytes per relay

23

5. RESULTS

Scenario - Strolling Onions

120000

Figure 5.3: Strolling Onions - 2019 sample set

Relay total bytes per client

. Vanilla
100000 PR Sing(M)
B P i Tele(M)
80000 et Sing(T)
60000 |- . friiiiEr #lammmmmmmmmmmmm = . Tele(T)
40000 :: : cgC -] Analytical
20000 [.
0 | | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
188888 - r Vanilla
80000 _.--7 4 Sing(M)
70000 PR - Tele(M)
60000 PR . Sing(T)
50000 P 7 Tele(T)
§8888 i PR | Analytical
20000 ;—_-__-;—_1_'_": e
10000 - =
0 | | | |
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
7
2.5x10 ' +' Vanilla
2x107 + +4 Sing(M)
¥ Tele(M)
1.5x107 | . Sing(T)
Tele(T
1x107 |- . ™
5x106 T
O | | | | | |
309 310 311 312 313 314 315 316

24

Number of relays

(c) Total relay bytes per relay

5.1. Simulation scenarios

Figure 5.4: Strolling Onions - 2021 sample set

Relay total bytes per client
120000 |

. Vanilla ——
100000 PR Sing(M)
_ P | Tele(M) ——
80000 e Sing(T)
60000 1~ . .- ---ooerioiIoiIiIiIiiicC . Tele(T)
40000 :’ = -] Analytical -----
20000 [.
O | | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
190000 | ' ' ' —J Vanilla ——
80000 - PR Sing(M)
70000 P . Tele(M) ——
60000 - PR] Sing(T) ——
50000 [.- - Tele(T)
‘318888 i e | Analytical -----
20000 p .-_:;é:".".:.’ I I I I I I A
10000 - —
0 | | | |
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
7
2.5x10 ' ' ' ' ' ' Vanilla +
2x107 | 4 Sing(M)
Tele(M) +
1.5x107 . Sing(T) +
1x107 | | Tele(T)
5x106 |- .
0 | | | | | |

291 292 293 294 295 296 297 298
Number of relays

(¢c) Total relay bytes per relay

25

d.

REsuLTS

26

Scenario - Running Onions

Figure 5.5: Running Onions - 2019 sample set

Relay total bytes per client

100000 IR B Sing(M)
B P i Tele(M)
80000 et Sing(T)
60000 -, . ------- el - Tele(T)
40000 i :: Pl ielielelielielelielieieiellielie “| Analytical
L+ "
20000 .
0 | | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
188888 - b4 Vanilla
80000 _.--7 |4 Sing(M)
70000 PR - Tele(M)
60000 PR . Sing(T)
50000 P 7 Tele(T)
§8888 i PR | Analytical
20000 p :E__-;—_'_"_:_‘ e (e
10000 ™ =
0 | | | |
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
7
7X107 ' Vanilla
6x10’ |- * 7 Sing(M)
5x107 |- 4 Tele(M)
4x107 - + 4 Sing(T)
3x107 - | Tele(T)
2x107 T
1x107 -
0 | |
103 104 105 106

Number of relays

(c) Total relay bytes per relay

5.1. Simulation scenarios
Figure 5.6: Running Onions - 2021 sample set
Relay total bytes per client
120000 ' . Vanilla ——
100000 -1 T Sing(M)
_ P Tele(M) ——
80000 S Sing(T)
60000 [, . .-~ S - o Tele(M)
40000 s '-: Pttt - - -] Analytical -----
-
20000 .
O | | | |
0 500 1000 1500 2000
Number of relays
(a) Total relay bytes per client
Client total bytes each
190000 ' ' ' 1] Vanila —
80000 - - Sing(M)
70000 - PR . Tele(M) ——
60000 - PR . Sing(T) ——
e | | it
30000 | /__.—] Analytical -----
20000 p s r e ek -
10000 +* —
0 | | | |
0 500 1000 1500 2000
Number of relays
(b) Total client bytes
Relay total bytes each
7
7X107 ' ¥ ' Vanilla +
6x107 | + 1 Sing(M)
5x107 |- 4 Tele(M) +
4x107 |- + 4 Sing(T) +
3x107 - N Tele(T)
2x107 | .
1x107 |- .
0 | |
97 98 99 100

Number of relays

(¢c) Total relay bytes per relay

27

d.

REsuLTS

28

The similarities between the results for relay total bytes per client and client total bytes
in section 5.1 are clearly visible and this is to be expected. If there were any differences,
they would point to the fact that the changes to the simulator have negatively impacted
the calculation of the total bytes that pass through the relays and the clients or that the
bandwidth of the relays affects the number of bytes needed for circuit construction. The
graphs in figures |5.7| and 5.8 are from the original simulator and show the correctness
of the applied changes - our simulation scenarios and the new bandwidth distribution
algorithm do not affect the number of bytes sent or received.

Figure 5.7: Total relay bytes - original simulator

Relay total bytes per client
120000 T

- Vanilla ——
100000 T Sing(M)
| i Tele(M) ——
80000 Sing(T)
60000 - -4 . I ¥ E— Tele(T)
40000 7T ="+ i i i © -] Analytical -----
20000 [.
0 | | | |
0 500 1000 1500 2000
Number of relays
Figure 5.8: Total client bytes - original simulator
Client total bytes each
188888 Vanilla —
80000 Sing(M)
70000 Tele(M) ——
60000 Sing(T) —
50000 Tele(T)
‘3‘8888 Analytical -----
20000
10000
0 | | | |

0 500 1000 1500 2000
Number of relays

5.2. Total throughout

5.2 Total throughout

An important observation for the scenarios is the total throughput that the relays have
per epoch. This enables us to judge how much of the total bandwidth has been consumed
for circuit building alone. The total throughput (7°) is calculated by the following formula:
T = 5 % 3600, where S stands for the sum of the bandwidths of the current distribution
in kilobytes per second and 3600 stands for the length of an epoch in seconds. Tables[5.1
and 5.2 represent the data obtained. The mean bandwidth and total throughput have
been rounded down.

Table 5.1: Total relay throughput - 2019 sample set, 5% scale

Samples Number of relays | Mean bandwidth | Total throughput
(kb/s, rounded) | (kb, rounded)
All samples 418 10669 1.606 x10™0
Above qo.75 105 34320 1.297 x1010
Below qo.75 313 2617 2.950 x10°

Table 5.2: Total relay throughput - 2021 sample set, 5% scale

Samples

Number of relays

Mean bandwidth
(kb/s, rounded)

Total throughput
(kb, rounded)

All samples 394 17706 2.505 x10'0
Above qo.75 99 58393 2.081 x10'
Below qo.75 295 4312 4.580 x10”

If we evaluate the results from section [5.1] together with the ones in tables 5.1 and 5.2,
we can obtain the proportion of total traffic that was required for circuit construction
for the different scenarios. As the values in the graphics are in bytes for all epochs, the
relay traffic per epoch will be calculated as such: S = N % T/(13 % (103)), where T is
the total bytes, N is the number of relays, 13 is the number of epochs (3 epochs are
required for bootstrap) and 103 is required for conversion to kilobytes. For convenience,
the evaluations are shown in tables 5.3 and 5.4. The evaluations have been obtained
using the script analysis/calcprop.py, located in the simulator repository from the
beginning of the chapter.

29

d.

RESsuLTS

30

Table 5.3: Relay total bytes - 2019 sample set, 5% scale

Protocols Total throughput | Relay traffic (kb, | Proportion,
(kb, rounded) rounded) rounded

All samples
Vanilla 1.606 x101° 8.879 x10° 5.530 x10~*
Tele(T) 1.606 x10'° 7.985 x10° 4.974 x1074
Tele(M) 1.606 x101° 1.002 x107 6.242 x1074
Sing(T) 1.606 x10'° 8.602 x10° 5.358 x10~*
Sing(M) 1.606 x101° 1.030 x107 6.416 x1074

Below q0.75
Vanilla 2.950 x10” 8.792 x10° 2.980 x10~3
Tele(T) 2.950 x10° 8.543 x10° 2.896 x1073
Tele(M) 2.950 x10° 1.056 x107 3.581 x1073
Sing(T) 2.950 x10° 9.332 x10° 3.164 x1073
Sing(M) 2.950 x10° 1.111 x107 3.767 x1073

Above q0.75
Vanilla 1.297 x101° 6.083 x10° 4.689 x10~4
Tele(T) 1.297 x10'° 7.764 x10° 5.985 x10~*
Tele(M) 1.297 x10%° 9.257 x10° 7.136 x10~*
Sing(T) 1.297 x10'° 9.537 x10° 7.352 x10~*
Sing(M) 1.297 x101° 1.105 x107 8.520 x1074

5.3. Circuit building times

Table 5.4: Relay total bytes - 2021 sample set, 5% scale

Protocols Total throughput | Relay traffic (kb, | Proportion,
(kb, rounded) rounded) rounded

All samples
Vanilla 2.505 x 100 9.195 x10° 3.670 x10~1
Tele(T) 2.505 x 1010 7.989 x10° 3.189 x10~*
Tele(M) 2.505 x 1010 1.011 x107 4.037 x1074
Sing(T) 2.505 x 1010 9.651 x10° 3.852 x10~*
Sing(M) 2.505 x 1010 1.166 x107 4.656 x1074

Below q0.75
Vanilla 4.580 x10? 7.541 x10° 1.646 x1073
Tele(T) 4.580 x10° 7.317 x10° 1.598 x1073
Tele(M) 4.580 x10? 9.123 x10° 1.922 x1073
Sing(T) 4.580 x10? 8.589 x 108 1.875 x1073
Sing(M) 4.580 x10° 1.029 x107 2.246 x1073

Above q0.75
Vanilla 2.081 x1010 6.055 x10° 2.909 x10~1
Tele(T) 2.081 x101° 8.247 x 108 3.963 x10~*
Tele(M) 2.081 x1010 9.826 x10° 4.721 x1074
Sing(T) 2.081 x1010 8.863 x10° 4.259 x1074
Sing(M) 2.081 x101° 1.028 x107 4.941 x1074

5.3 Circuit building times

Figures 5.9/ and |5.10| present the relative circuit building times, calculated with algo-
rithm 4.1, The points represent the mean times in milliseconds that are required for
constructing a circuit, using the different protocols. As mentioned in chapter 4], the plots
are based on data, obtained from the Tor metrics project. Under each plot, you will find

the name of the OnionPerf [32] service that provided the data.

31

5. RESULTS

Figure 5.9: Relative circuit building times - 2019 sample set

Relative circuit building times

850 op-ab-vanilla +
5 800 - 7 op-ab-tele-thresh X
£ 750 | . op-ab-tele-merkle
n 700 E op-ab-singlep-thresh
g 650 - op-ab-singlep-merkle
> 600 B
2 550 [-
o 500 X .
< 450 . .
400
(a) op-ab
Relative circuit building times
3400 op-hk-vanilla +
5 3200 F 7 op-hk-tele-thresh X
g 3000 . op-hk-tele-merkle
w2800 [. op-hk-singlep-thresh
g 2600 - 4 op-hk-singlep-merkle
o 2400 —
2 2200 - B
< 2000 x .
[~
1800 i —
1600
(b) op-hk
Relative circuit building times
600 op-nl-vanilla +
“» 550 — op-nl-tele-thresh X
£ 500 L | op-nl-tele-merkle
0 op-nl-singlep-thresh
8 450 B op-nl-singlep-merkle
o 400 - -
2
w 350 X 1
K9]
< 300 [+ —
250
(c) op-nl
Relative circuit building times
2200 op-us-vanilla +
w2000 | . op-us-tele-thresh X
£ op-us-tele-merkle
»n 1800 = op-us-singlep-thresh
g op-us-singlep-merkle
= 1600 B
]
2 1400 - -
o
g 1200 | < .
1000

32 (d) op-us

5.3. Circuit building times

Figure 5.10: Relative circuit building times - 2021 sample set

Relative times (ms) Relative times (ms) Relative times (ms)

Relative times (ms)

Relative circuit building times

340 op-de6a-vanilla
320 | T op-de6a-tele-thresh
300 - T op-de6a-tele-merkle
280 + . op-deba-singlep-thresh
260 - i op-deba-singlep-merkle
240 .

220 .

200 X .

180 4 T

160

(a) op-deba

Relative circuit building times
3500

op-hk6-vanilla
3000 F i op-hk6-tele-thresh
op-hk6-tele-merkle
2500 . op-hk6-singlep-thresh
op-hk6-singlep-merkle
2000 X A op-hk6a-vanilla
i op-hk6a-tele-thresh
1500 T op-hk6a-tele-merkle
L | op-hk6a-singlep-thresh
1000 8 op-hk6a-singlep-merkle
500
(b) op-hk6
Relative circuit building times
550 op-nl6-vanilla
500 | i op-nl6-tele-thresh
op-nl6-tele-merkle
450 E op-nl6-singlep-thresh
op-nl6-singlep-merkle
400 -
350 —
300 X —
250 —
(¢) op-nl6
Relative circuit building times
2200 op-us6-vanilla
2000 F , op-us6-tele-thresh

op-us6-tele-merkle
1800 — op-us6-singlep-thresh
op-us6-singlep-merkle

1600 | .

1400 | .

1200 | % .
+

1000

(d) op-us6

X +

<»r>e@O0

33

CHAPTER

Discussion

The findings from chapter |5 indicate that because of the additional protocol complexity
there will be trade-offs between the bandwidth used and the time needed for circuit
construction.

Let us first focus on tables 5.1 and 5.2l The results show us that the proportion of
traffic used for circuit construction at this scale (5% of the sample set) is negligible. This
holds true for all three scenarios: all samples, samples under the upper quartile (global
network slowdown), and samples over the upper quartile. An interesting observation
is that the last scenario would actually reduce the proportion of construction-related
traffic to total throughput when running the vanilla implementation as compared to
the first one. Anonymity is, of course, compromised as per the reasons mentioned in
section |4.1. Nevertheless, the analysis leads us to the conclusion that the Walking Onions
set of protocols performs and scales objectively well on all devices, when the performance
model used for evaluation is throughput.

While the original research focuses on the bandwidth used, which is a good usability
mark, the thesis offers results that are based on a more user-centric metric - time. The
data presented in section 5.3 indicates how much time a Tor implementation running the
Walking Onions protocols would need for constructing a circuit in comparison with the
vanilla implementation. It is visible that even with statistical interference considered, the
improved stack builds circuits slower than the status-quo (thus confirming the hypothesis
from [4.2.2)). The current protocol needs the least time for circuit construction, single
pass Walking Onions - the most, whereas the telescoping implementation is in the middle.
Additionally, one can also see that clients, using Merkle trees as an authentication
algorithm, generally need more time to obtain a functioning circuit than the ones using
threshold signatures. The only exception is visible in 5.10/ b), but it is due to the fact
that two OnionPerf datasets were combined into one.

34

The facts from above suggest that there is a trade-off when using the improved protocol
stack: while Walking Onions requires less bandwidth for constructing a connection, thus
making space on the network for more actual data, the amount of computation needed
impacts the circuit building times on slower devices.

When evaluating the results, it is important to keep in mind that the simulator and
the study are not perfect. For example, these simulations were only run for 5% of the
sample size due to hardware limitations. As such, possible future work would be to rerun
the simulation on larger scale. Furthermore, while this experiment used an ideal-world
simulator, written specifically for this use-case, an evaluation of the real-world protocol
implementations also need been performed. Additionally, this work does not take into
account statistical interference as per Jansen et al. [19], so performing sound evaluation
is also a research possibility. Finally, as the drawbacks of the protocol can be mitigated
to some extent by reducing the complexity, future work should focus on simplifying the
algorithms without compromising security or anonymity.

35

CHAPTER

Conclusion

By conducting empirical tests in different simulation scenarios, based on real-world data,
this study was able to prove that the Walking Onions set of protocols performs well in
different environments. The results showed that the protocols would scale well with the
Tor network and that the amount of bandwidth used for circuit construction remains
small in comparison to the total throughput even if there is a global slowdown of the
network. For all their positives, the protocols also have their negatives: the Walking
Onions protocols will benefit the general throughput of the Tor network, but will damage
the experience for users or relay operators, using under-powered devices like low-end
smartphones or cheap single-board computers.

As each study, there have been some limitations - mainly hardware for simulations and
statistical errors. Some improvements would be to rerun the simulation using larger
sample sizes, run emulations with a real implementation of Walking Onions and count
statistical interference in the results. Researchers and Tor developers should focus on
improving the algorithms for circuit constructions as it would vastly improve the quality
of life for users and relay operators.

36

List of Figures

2.1 Vanilla Tor circuit construction!o 5
2.2 Walking Onions - Single Pass circuit construction 9
4.1 Bandwidth distributions, 2019 & 2021 15
4.2 Simulator UML diagram (relevant classes) 19
5.1 Walking Onions - 2019 sampleset| 22
5.2 Walking Onions - 2021 sample set| 23
5.3 Strolling Onions - 2019 sampleset, 24
5.4 Strolling Onions - 2021 sample set| 25
5.5 Running Onions - 2019 sample set| 26
5.6 Running Onions - 2021 sampleset| 27
5.7 'Total relay bytes - original simulator| 28
5.8 'Total client bytes - original simulator|. 28
5.9 Relative circuit building times - 2019 sample set, 32
5.10 Relative circuit building times - 2021 sample set| 33

37

0.1
5.2
9.3
5.4

List of Tables

Total relay throughput - 2019 sample set, 5% scale
Total relay throughput - 2021 sample set, 5% scale

Relay total bytes - 2019 sample set, 5% scale
Relay total bytes - 2021 sample set, 5% scale

29
29
30
31

39

40

List of Algorithms

4.1 Relative circuit building time calculation 16

4.2 Adjusted Jansen distribution algorithm| 18

Bibliography

The Tor Project. Users - Tor Metrics. https://metrics.torproject.
org/userstats—-relay-country.html?start=2020-12-25&end=
2021-12-25&country=allsevents=off. Accessed: 23.02.2022.

The Tor Project. How can I make Tor run faster? Is Tor Browser slower than other
browsers? |https://support.torproject.org/tbb/tbb-22/. Accessed:
23.02.2022.

John Leyden. The ’one tiny slip’ that put LulzSec chief Sabu in the
FBI’'s pocket. |https://www.theregister.com/2012/03/07/1ulzsec_
takedown_analysis/} 2012. Accessed: 23.02.2022.

Chelsea H. Komlo, Nick Mathewson, and Ian Goldberg. Walking Onions: Scaling
Anonymity Networks while Protecting Users. In 29th USENIX Security Symposium
(USENIX Security 20), pages 1003-1020. USENIX Association, August 2020.

Chelsea H. Komlo, Nick Mathewson, and Ian Goldberg. Simulator: Source
code. |https://git-crysp.uwaterloo.ca/iang/walkingonionsl Ac-
cessed: 17.03.2022.

Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The Second-Generation
Onion Router. In 13th USENIX Security Symposium (USENIX Security 04), San
Diego, CA, August 2004. USENIX Association.

The Tor Project. Servers - Tor Metrics. https://metrics.torproject.
org/networksize.html?start=2020-12-256end=2021-12-25. Accessed:
23.02.2022.

The Tor Project. Tor directory protocol, version 3. https://
gitweb.torproject.org/torspec.git/tree/dir-spec.txt. Accessed:
23.02.2022.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short Signatures from the Weil Pairing.
In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001, pages 514-532,
Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.

41

https://metrics.torproject.org/userstats-relay-country.html?start=2020-12-25&end=2021-12-25&country=all&events=off
https://metrics.torproject.org/userstats-relay-country.html?start=2020-12-25&end=2021-12-25&country=all&events=off
https://metrics.torproject.org/userstats-relay-country.html?start=2020-12-25&end=2021-12-25&country=all&events=off
https://support.torproject.org/tbb/tbb-22/
https://www.theregister.com/2012/03/07/lulzsec_takedown_analysis/
https://www.theregister.com/2012/03/07/lulzsec_takedown_analysis/
https://git-crysp.uwaterloo.ca/iang/walkingonions
https://metrics.torproject.org/networksize.html?start=2020-12-25&end=2021-12-25
https://metrics.torproject.org/networksize.html?start=2020-12-25&end=2021-12-25
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt
https://gitweb.torproject.org/torspec.git/tree/dir-spec.txt

[10]

[13]

[14]

[15]

18]

[19]

42

Ralph C. Merkle. A Digital Signature Based on a Conventional Encryption Function.
In A Conference on the Theory and Applications of Cryptographic Techniques on
Advances in Cryptology, CRYPTO ’87, pages 369-378, Berlin, Heidelberg, 1987.
Springer-Verlag.

Robin Snader and Nikita Borisov. A Tune-up for Tor: Improving Security and
Performance in the Tor Network. In Network and Distributed System Security
Symposium. Internet Society, February 2008.

Steven J. Murdoch and Robert N. M. Watson. Metrics for Security and Performance
in Low-Latency Anonymity Systems. In Privacy Enhancing Technologies, pages
115-132, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Sebastian Miiller, Franziska Brecht, Benjamin Fabian, Steffen Kunz, and Dominik
Kunze. Distributed Performance Measurement and Usability Assessment of the Tor
Anonymization Network. Future Internet, 4:488-513, 05 2012.

SEOmoz Top 500. https://moz.com/top500. Accessed: 17.03.2022.

Fatemeh Shirazi, Matthias Goehring, and Claudia Diaz. Tor Experimentation Tools.
In 2015 IEEFE Security and Privacy Workshops, pages 206213, 2015.

Kevin Bauer, Micah Sherr, and Dirk Grunwald. ExperimenTor: A Testbed for
Safe and Realistic Tor Experimentation. In 4th Workshop on Cyber Security Ez-
perimentation and Test (CSET 11), San Francisco, CA, August 2011. USENIX
Association.

Ken Yocum, Kevin Walsh, Amin Vahdat, Priya Mahadevan, Dejan Kostic, Jeff Chase,
and David Becker. Scalability and Accuracy in a Large-Scale Network Emulator.
SIGCOMM Comput. Commun. Rev., 32(3):28, jul 2002.

Rob Jansen and Nicholas Hopper. Shadow: Running Tor in a Box for Accurate and
Efficient Experimentation. In Proceedings of the 19th Symposium on Network and
Distributed System Security (NDSS). Internet Society, February 2012.

Rob Jansen, Justin Tracey, and Ian Goldberg. Once is Never Enough: Foundations
for Sound Statistical Inference in Tor Network Experimentation. In 30th USENIX
Security Symposium (USENIX Security 21), pages 3415-3432. USENIX Association,
August 2021.

The Tor Project. Relay Associations. https://community.torproject.
org/relay/community-resources/relay—associations/. Accessed:
23.02.2022.

The Tor Project. Tor Metrics: circuit build times. https://metrics.
torproject.org/onionperf-buildtimes.html. Accessed: 17.03.2022.

https://moz.com/top500
https://community.torproject.org/relay/community-resources/relay-associations/
https://community.torproject.org/relay/community-resources/relay-associations/
https://metrics.torproject.org/onionperf-buildtimes.html
https://metrics.torproject.org/onionperf-buildtimes.html

[22]

[23]

[24]

The Tor Project. Tor Metrics: circuit build times spec. https:
//metrics.torproject.org/stats.html#onionperf-buildtimes. Ac-
cessed: 17.03.2022.

Chelsea H. Komlo, Nick Mathewson, and Ian Goldberg. Simulator: Relay band-
width distribution algorithm. |https://git—-crysp.uwaterloo.ca/iang/
walkingonions/src/7d60eef9381137bdbec37921d7f7b862c543e4ded/
simulator.py#L79. Accessed: 17.03.2022.

Chelsea H. Komlo, Nick Mathewson, and Ian Goldberg. Simulator: Number of
relays. https://git-crysp.uwaterloo.ca/iang/walkingonions/src/
7d60eef9381137b4bec37921d7f7b862c543e4ed/simulator.py#L343.
Accessed: 17.03.2022.

The Tor Project. Tor Metrics: bandwidth files. https://metrics.torproject.
org/collector.html#type-bandwidth-filel Accessed: 17.03.2022.

The Tor Project. Simple Bandwidth Scanner: documentation. |https://tpo.
pages.torproject.net/network—health/sbws/. Accessed: 17.03.2022.

The Tor Project. Tor Bandwidth File Format. https://gitwebl
torproject.org/torspec.git/tree/bandwidth-file-spec.txt. Ac-
cessed: 23.02.2022.

Rob Jansen, Kevin Bauer, Nicholas Hopper, and Roger Dingledine. Methodically
Modeling the Tor Network. In 5th Workshop on Cyber Security Ezperimentation
and Test (CSET 12), Bellevue, WA, August 2012. USENIX Association.

Python Software Foundation. Python: multiprocessing library. https://docs.
python.org/3/library/multiprocessing.html. Accessed: 17.03.2022.

Python Software Foundation. Python: Process class. lhttps://docs.python.

org/3/library/multiprocessing.html#multiprocessing.Process.
Accessed: 17.03.2022.

Python Software Foundation. Python: resource library. https://docs.python.
org/3/library/resource.html. Accessed: 17.03.2022.

The Tor Project. Tor GitLab: OnionPerf. https://gitlab.torproject.org/
tpo/network—-health/metrics/onionperf. Accessed: 17.03.2022.

43

https://metrics.torproject.org/stats.html#onionperf-buildtimes
https://metrics.torproject.org/stats.html#onionperf-buildtimes
https://git-crysp.uwaterloo.ca/iang/walkingonions/src/7d60eef9381137b4bec37921d7f7b862c543e4e4/simulator.py#L79
https://git-crysp.uwaterloo.ca/iang/walkingonions/src/7d60eef9381137b4bec37921d7f7b862c543e4e4/simulator.py#L79
https://git-crysp.uwaterloo.ca/iang/walkingonions/src/7d60eef9381137b4bec37921d7f7b862c543e4e4/simulator.py#L79
https://git-crysp.uwaterloo.ca/iang/walkingonions/src/7d60eef9381137b4bec37921d7f7b862c543e4e4/simulator.py#L343
https://git-crysp.uwaterloo.ca/iang/walkingonions/src/7d60eef9381137b4bec37921d7f7b862c543e4e4/simulator.py#L343
https://metrics.torproject.org/collector.html#type-bandwidth-file
https://metrics.torproject.org/collector.html#type-bandwidth-file
https://tpo.pages.torproject.net/network-health/sbws/
https://tpo.pages.torproject.net/network-health/sbws/
https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt
https://gitweb.torproject.org/torspec.git/tree/bandwidth-file-spec.txt
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/resource.html
https://docs.python.org/3/library/resource.html
https://gitlab.torproject.org/tpo/network-health/metrics/onionperf
https://gitlab.torproject.org/tpo/network-health/metrics/onionperf

	Abstract
	Contents
	Introduction
	Background
	Relays and directory servers
	Vanilla Tor protocol - circuit building
	Walking Onions

	Related work
	Tor performance evaluation
	Tor experimentation
	Summary

	Methodology
	Simulation scenarios
	Circuit building times
	Simulator changes
	Initial attempts

	Results
	Simulation scenarios
	Total throughout
	Circuit building times

	Discussion
	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

